

The UPM RT09 Meetings Evaluation System

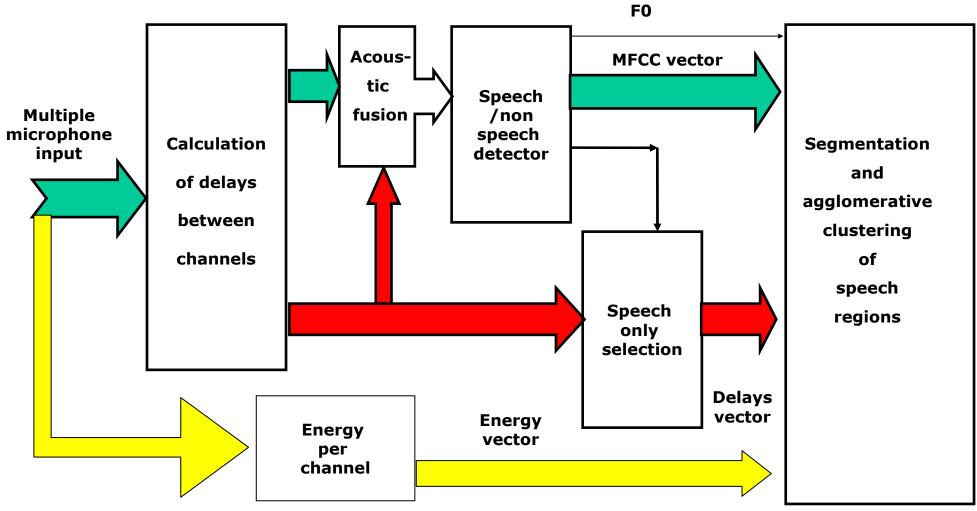
Jose M. Pardo, Roberto Barra, Beatriz Martínez

Speech Technology Group. ETSI Telecomunicación. Universidad Politécnica Madrid.

Contents

- Introduction
- System description
 - Channels preprocessing
 - Acoustic fusion and parameters extraction
 - Speech/non speech detection
 - Segmentation and clustering
 - Frame purification
 - Stopping criterion
 - Improvements using extra features
- Results
- After evaluation analysis
- Conclusion

Introduction


- First time UPM participates
- Start from system submitted from ICSI in 2006 [1] named c-spsnspdelay adding frame purification
- Add extra features: normalized energy for every channel and F0

[1] X. Anguera, C. Wooters, J. M. Pardo, "Robust speaker diarization for meetings: ICSI RT06s meetings evaluation system," Lecture Notes in Computer Science, Volume 4299/2006, pp. 346-358, ISSN 0302-9743, 2006

System description

System description: Channels preprocessing

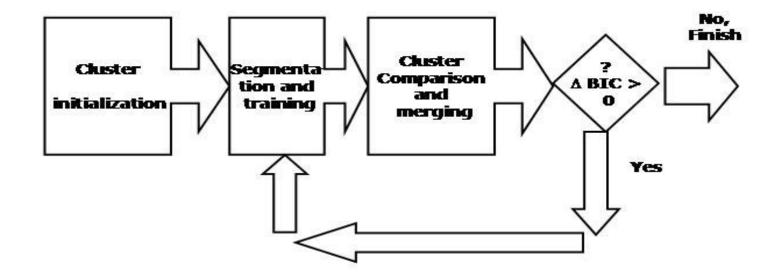
- Noise reduction (Wiener filtering)- Qualcomm-ICSI-OGI
- Time delay of arrival (TDOA) estimation, Generalized cross correlation with phase transform (GCCPHAT) plus peak selection algorithm. Creation of a TDOA vector every 10 msec.
- Estimating normalized energy for each channel at frame n

$$ene[n, i] = 10log_{10}(\frac{1}{n_2 - n_1} \sum_{k=n_1}^{n_2} s_i^2[k])$$

$$\frac{\overline{ene}[n,i]}{\sum_{i=0}^{D_{ene}-1} ene[n,i]}$$

Acoustic fusion and feature extraction

- Beamforming a single channel: delay and sum (Beamformit v 2.0 by X. Anguera), 500 msec window.
- MFCC extraction 19th order, 30 msec window, 10 msec shift.
- Calculate log fundamental frequency, F0. We interpolate it for unvoiced segments



Speech- non speech detector

- Same as presented by ICSI RT06
- Initial segmentation based on energy and minimum number of samples for non-speech (1600- 0.15 sec). Used to estimate initial non speech models
- Two GMM models, one for speech, one for nonspeech, parameters: minimum duration (0.7 sec) and number of initial mixtures for speech (2).

Segmentation and agglomerative clustering

Segmentation and agglomerative clustering

- Initial gaussians per model (5). They are increased after merging clusters
- Minimum duration (2.5 sec)
- Decision on segmentation $\max_{\boldsymbol{\theta}_i} \log p(x[n] | \boldsymbol{\theta}_i)$
- Initialization = homogenous segmentation, 16 initial clusters

Frame purification

- Some percentage of frames (silences, noises) are too short to be part of a new cluster but corrupt the cluster models [2].
- Aims to detect and eliminate non-speech frames that do not help in discriminating speakers
- 10% of frames with highest likelihood computed on gaussians with smaller variance are removed for training models that have more than two gaussians before computing ΔBIC (merging criterion)

[2] X. Anguera. "Robust speaker diarization for meetings", Ph D Thesis, Universitat Politécnica de Catalunya, October 2006

Merging

 Delta BIC without penalty term of standard BIC[2]

$$\Delta BIC = \log p(D \mid \theta) - \log p(D_a \mid \theta_a) - \log p(D_b \mid \theta_b)$$

n parameter in
$$\theta_{I\!\!P}$$
 parameter in θ_a + θ_b

[2] J. Ajmera, C, Wooters: A Robust speaker clustering algorithm, IEEE ASRU 2003.

Using new features

MFCC features, starting with 5 Gaussians

Concatenation of TDOA plus energy 1 Gaussian

Log F0 1 Gaussian Training separate models for the same cluster

Using extra features

Compound likelihood as in [3]

$$\log p(x[n], y[n], z[n] | \theta_a) =$$

$$\alpha \log p(x[n] | \theta_{ax}) + \beta \log p(y[n] | \theta_{ay}) +$$

$$\gamma \log p(z[n] | \theta_{az})$$

$$\alpha + \beta + \gamma = 1$$

• Used both in segmentation and in merging (for Δ BIC)

[3] J.M. Pardo, X. Anguera, C. Wooters, "Speaker Diarization for Multiple-Distant-Microphone Meetings Using Several Sources of Information" IEEE Transactions on Computers, Vol. 56, No. 9, September 2007, pp 1212-1224

Contrastive system

Instead of three streams, use four streams of data with the same philosophy

MFCC features, starting with 5 Gaussians

TDOA features starting with 1 Gaussian

Energy features starting with1 Gaussian

Log F0 starting with 1 Gaussian

Training separate models for the same cluster

Results

System	Official DER Results	Relative improvement	DER for RT06 plus devel06	Relative improvement
p-gthtls	21.38%	4.6%	10.81%± 0.047	2.17%
c-gthmdef	22.43%		11.05% ± 0.047	

After evaluation analysis

System	DER for RT09	Relative improvement from the baseline
Base RT06 system	25.67 %	
Base plus energy features	23.64 %	7.9%
Base plus F0 feature	22.94 %	10.63%
All included (official result)	21.38 %	16.71%

• Difference is significant with 95% confidence interval

Development analysis: Comparison using energy features

	All06 (rt06 plus devel 06 :20 meetings)	RT 07	RT 09
RT 06 system	13.4	14.12	25.63
Baseline plus energy	12.7	13.61	23.64

Comparison using F0 analysis and energy

	RT 06	RT09
Base line	18.52	25.67
Base line plus F0	15.63	22.94
Base line plus enery plus F0	14.86	21.38

Conclusion

- We presented an improved method to do speaker diarization.
- We added a normalized energy channels vector
- We added a log F0 vector
- We obtained 16.71 % improvement over the baseline

